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Abstract  

 

Pain is a complex subjective experience, that can be shaped by several cognitive, 

psychological and even contextual variables. For example, simply viewing the body reduces 

the reported intensity of acute physical pain. We investigated whether this visually induced 

analgesia can be modulated by the visually depicted size of the stimulated body part. We 

measured contact heat-pain thresholds, while participants viewed either their own hand or a 

neutral object, at real size, enlarged, or reduced. Vision of the body was analgesic, increasing 

heat-pain thresholds by ~ 4°C. Importantly, enlargement of the viewed hand enhanced this 

analgesia, while looking at a reduced hand decreased it. These results demonstrate that visual 

distortions of body size modulate sensory components of pain, and reveal a clear functional 

relation between the perception of pain and the representation of the body.  
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Introduction 

 

Pain is a frequent but unpleasant experience, with clearly negative impact on well-

being. Pain can be caused by peripheral stimuli (e.g., burning one’s fingers), by chronic body 

states (e.g., back pain), or by mechanisms entirely within the brain (e.g., phantom limb pain). 

The pain generated by a peripheral stimulus varies dramatically across individuals and within 

individuals across time, so the subjective aspect of pain cannot be ignored (Eisenberger & 

Lieberman, 2004; Melzack & Wall, 1965). An important element of this subjectivity comes 

from the wide variety of top-down factors that modulate pain (Chen, Williams, Fitness, & 

Newton, 2008; Gray & Wegner, 2008). The best-known modulations of pain are cognitive 

situational factors and complex psychological processes based on expectation and arousal 

(Wiech, Ploner, & Tracey, 2008), such as placebo effects. 

However, simpler perceptual factors also influence pain. For example, just looking at 

one’s own body reduces both reported intensity and neural responses to painful stimuli, 

compared to viewing a neutral object (Longo, Betti, Aglioti, & Haggard, 2009). This visually 

induced analgesia demonstrates that acute pain can be modulated by specific features of the 

visual context. This raises the possibility that manipulating the visual appearance of the body 

might further modulate pain. Indeed, there is some evidence that the visually-specified size of 

the body may affect chronic pain in certain clinical populations (Moseley, Parsons, & 

Spence, 2008; Ramachandran, Brang, & McGeoch, 2009). In this study, we investigated 

whether manipulating the visually depicted size of the body modulates experimentally-

induced pain in healthy participants. 

Previous studies of cross-modal pain modulation generally relied on pain intensity 

ratings. Such ratings reflect both the ‘sensory-discriminative’ and post-perceptual ‘affective-

motivational’ components of pain (Auvray, Myin, & Spence, 2010; Melzack & Casey, 1968). 
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We isolated the sensory-discriminative component using contact heat-pain thresholds, which 

directly measure sensory aspects of acute pain (Yarnitsky, Sprecher, Zaslansky, & Hemli, 

1995), while participants viewed their own hand or a neutral object that appeared either 

visually reduced, at real size, or enlarged. Evidence for an effect of apparent body size on 

pain perception would have important implications for the development of cognitive 

therapies for acute pain. 

 

 

Methods 

 

Participants 

Eighteen healthy right-handed volunteers (11 females, mean age 27.1, SD 4.1) 

participated
 
for payment. Procedures were approved by the UCL

 
ethics committee.

 
 

 

Thermal stimuli 

Thermal stimulation of the dorsum of the left hand, just proximal to the knuckle of the 

index finger (first metacarpal space), was delivered by a 13 mm diameter Peltier-type 

thermode (NTE-2A, Physitemp Instruments Inc). The probe was held by a mechanical arm to 

control contact pressure.  

Thresholds for heat pain were estimated with the method of limits (Yarnitsky et al., 

1995). The probe temperature was increased from the adaptation range (constant 32°C, 

initially maintained for 20 sec) towards the pain range by 2°C/sec. For safety, maximum 

temperature was limited to 50°C. Participants pressed a foot pedal with their right foot when 

they first perceived the stimulation as being painful. 
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Procedure  

We used the mirror box technique (Ramachandran, Rogers-Ramachandran, & Cobb, 

1995) to induce the feeling that the participant’s right hand, reflected in a mirror aligned with 

their sagittal plane, was actually a direct view of their stimulated left hand. Participants sat at 

a table, with the left hand behind the mirror and the right hand in front. The tips of each index 

finger were 20 cm from the mirror. One group of participants (n = 9) looked into the mirror 

towards their left hand, and saw the reflection of their right hand, appearing where they felt 

their left hand to be. For a second group (n = 9), the right hand was occluded by a box, and 

participants saw the reflection of an approximately hand-sized wooden block placed over it (3 

cm over the hand). The visually-specified size of the hand/object was manipulated 

exchanging three different mirrors (figure 1): a convex mirror giving 2x reduction (0.5x 

magnification), a normal mirror, and a concave mirror giving 2x magnification. The different 

visual sizes (reduced, real size, enlarged) were tested in randomised blocks. Because of the 

length of each block, a between subject design was preferred for the hand vs. object factor to 

avoid known problems of pain habituation/sensitization. 

Familiarisation with the stimulus was first performed over a skin region not used in 

the main experiment (the centre of the hand dorsum). Next, in each of the three blocks, 

participants were instructed to look into the mirror and fixate the hand/object continuously. 

After 10 min of fixation, four heat-pain staircase measurements were obtained from the left 

hand at 1 min intervals. To avoid perceptual conflict, a fake thermode probe was 

simultaneously applied to the right hand at the location where the stimulation was felt on the 

left hand. Three minutes of rest were allowed between blocks.  

(figure 1 here) 

Three additional measures were collected. First, we administered an established 

questionnaire (Longo et al., 2009) to ensure that the mirror box induced a compelling visual 
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illusion of directly viewing the left hand. Second, to check that visual enlargement and 

reduction of the hand size actually altered represented hand size, participants were asked to 

judge how big they felt their hand was, using a specially-designed apparatus. Participants 

adjusted the distance between two visual points to match the distance between the index and 

little finger knuckles of their left hand. Hand size judgments were made immediately before 

and after each block. Finally, to assess whether pain thresholds could have changed due to 

changes in skin temperature, an infrared thermometer was used to measure skin temperature 

immediately before and after viewing the hand/object. 

 

 

Results 

 

Questionnaire responses 

Agreement or disagreement to each item of the illusion questionnaire was tested by 

comparing the overall mean score with 0 using t tests. Overall, the mirrors elicited the 

illusion of viewing one’s own left hand when viewing the hand (item 1: t8 = 3.41, p = 0.009; 

item 2: t8 = 5.13, p = 0.001; item 3: t8 = -12.71, p < 0.001) but not the object (all ps > 0.50).  

Three ANOVAs were conducted on the ratings of each item to test the effect of visual 

size.  None of them showed significant visual size effects (item 1: F2,30 = 1.27, p = 0.297, ηp
2
 

= 0.08; items 2 and 3: F < 1). This indicates that visual size distortion did not influence the 

illusion of viewing one’s hand (figure 2). 

(figure 2 here) 

 

Hand size estimates 
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Differences of the hand size estimates given before and after visual exposure were 

analysed using repeated measure ANOVA with a between-subjects factor (visual context: 

hand, object) and a within-subjects factor (visual size: reduced, real size, enlarged), using the 

Greenhouse−Geisser correction where appropriate. The ANOVA showed no significant main 

effect of visual context (F < 1), but a significant effect of size (F2,30 = 8.78, p = 0.003, ηp
2
 = 

0.35), and a significant interaction (F2,30 = 9.95, p = 0.002, ηp
2
 = 0.38) (figure 3, left panel). 

Simple effects showed that this interaction emerged because visual size influenced 

represented hand size when viewing the hand (F2,16 = 13.23, p < 0.001, ηp
2
 = 0.62) but not the 

object (F < 1). Bonferroni follow-up testing in the view-hand condition confirmed that seeing 

the hand as bigger increased represented hand size (p = 0.003), while seeing the hand as 

smaller shrank it (p = 0.002), relative to the control condition. All the comparisons between 

visual size conditions when viewing the object were non-significant (ps > 0.30). These results 

indicate that the size at which the body was viewed influenced the representation of body 

size. 

 

Pain thresholds 

In the normal mirror condition, viewing the hand at its natural size increased heat-

pain thresholds (mean 44.90°C, SE 0.98), in comparison to the view object condition (mean 

41.69°C, SE 1.07) (t16 = 2.14, p = 0.048). In other words, merely viewing the hand had an 

analgesic effect on heat-pain thresholds. 

ANOVA on the heat-pain thresholds revealed significant main effects of visual 

context (F1,16 = 5.20, p = 0.037, ηp
2
 = 0.24), and of visual size (F2,32 = 4.16, p = 0.025, ηp

2
 = 

0.21). Crucially, there was a significant interaction between these two factors (F2,32 = 4.58, p 

= 0.018, ηp
2
 = 0.22). Simple effects analyses showed that visual size modulated pain 

thresholds when participants saw their hand (F2,16 = 10.18, p = 0.001, ηp
2
 = 0.56), but not the 
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object (F < 1). Bonferroni follow-up tests showed that this arose because visual enlargement 

of size increased the analgesic effect of viewing the body (p = 0.032), whereas visual 

reduction decreased the analgesic effect (p = 0.043), relative to the real size condition (figure 

3, right panel). In contrast, visual size of the object had no effect on pain thresholds (F < 1). 

Because pain thresholds depend on baseline skin temperature, we also investigated 

whether the different visual conditions induced changes in skin temperature, and thus 

influenced pain thresholds indirectly. However, no significant main effects or interaction 

were found (F < 1). 

(figure 3 here) 

 

 

Discussion 

 

This study yielded three main findings: (1) Viewing the body versus viewing a neutral 

object is analgesic with specific effects on sensory-discriminative processing of pain, 

increasing heat-pain thresholds by about 4°C. (2) The size at which the hand is viewed alters 

the size the hand is represented as having. (3) Viewing an enlarged hand increases the 

analgesic effect of seeing the hand, whereas viewing a reduced hand decreases it. In other 

words, a stimulus needs to be warmer to be painful when applied to a body part that is seen as 

bigger than its actual size. Conversely, a stimulus needs to be less warm to produce pain 

when applied to a body part that is seen as smaller than its actual size.  

We thus demonstrate for the first time that vision of the body modulates the ‘sensory-

discriminative’ components of pain experience. Previous studies comparing viewing the body 

to a neutral object measured pain intensity ratings (Longo et al., 2009). These may be 

influenced by post-perceptual ‘affective-motivational’ components of pain (Melzack & 
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Casey, 1968), such as task demands, response biases, and individual differences (Iannetti, 

Hughes, Lee, & Mouraux, 2008). Further, recent reviews have questioned how much of 

‘pain’ is truly specific to nociceptive stimulation, and how much is due to general salience 

and arousal mechanisms (Iannetti & Mouraux, 2010). Therefore, our results using pain 

thresholds suggest that viewing the body modulates sensory processes specific to pain 

perception. 

Our results provide an intriguing contrast with recent psychological studies of 

empathy for pain. Singer and colleagues (2004) found that empathy for the perceived pain of 

others influenced affective – but not sensory – aspects of pain, while other studies showed 

changes in sensory brain areas (Bufalari, Aprile, Avenanti, Di Russo, & Aglioti, 2007) when 

viewing painful stimulation of others. On the other hand, we previously found that simply 

viewing the body of another person (a confederate unknown to participants) did not influence 

either ratings of pain intensity, nor the brain’s response to painful stimulation (Longo et al., 

2009). One recent study, however, found that viewing photographs of one’s partner – but not 

of a stranger – was analgesic (Master et al., 2009). This suggests that social modulation of 

pain involves recognition of the identity of the other person. The present results, in contrast, 

show that analgesic effects of self-perception depend quite directly and proportionately on 

basic metric features of the visual input, in this case visual size. 

 Viewing the body was previously reported to improve tactile acuity (Kennett, Taylor-

Clarke, & Haggard, 2001). This tactile modulation was further enhanced by visual 

enlargement. The striking similarity with the present results suggests that visual enhancement 

of touch and visually induced analgesia may indicate similar mechanisms. For example, 

visual and multisensory areas that represent one’s own body and peripersonal space might 

modulate networks of inhibitory interneurons in early somatosensory regions. Here, we 

further showed that reduction of visual hand size increased pain. This bidirectional 
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modulation rules out explanations based simply on attention, expectations or novelty. Visual 

distortion of one’s own body is unusual in everyday life, so it might plausibly lead to a non-

specific arousal effect. However, such non-specific attentional effects should be similar for 

increased or decreased scales. Our results rather indicate a specific, proportional relation 

between visual body size and pain perception. 

Previous studies demonstrated that alterations of afferent input cause changes in the 

perceived size of affected body parts (Gandevia & Phegan, 1999).  Here, we demonstrate an 

additional causal relationship in the opposite direction. That is, altering the perceived size of 

a body part causes changes in pain processing. 

Interestingly, a previous study of body size effects on chronic pain reported an 

apparently opposite effect. Moseley and coworkers (2008) reported that chronic pain ratings 

and swelling evoked by movement in patients with complex regional pain syndrome (CRPS) 

increased when viewing the limb enlarged, and decreased when viewing the limb reduced. 

However, different neurophysiological mechanisms underlie acute and chronic pain 

(Apkarian, Bushnell, Treede, & Zubieta, 2005; Moseley, Sim, Henry, & Souvlis, 2005).  The 

links between the two mechanisms may be inhibitory, with acute pain inhibiting chronic pain 

(Baliki, Geha, Fields, & Apkarian, 2010).  Further, different therapies relieve the two forms 

of pain (e.g., Chou & Huffman, 2007; Wiffen, McQuay, Edwards, & Moore, 2005). 

Importantly, CRPS alters the territory of the affected limb in somatosensory brain regions 

(Maihofner, Handwerker, Neundorfer, & Birklein, 2003), and involves a complex pattern of 

disorders, including impaired body image and sense of ownership (e.g., Lewis, Kersten, 

McCabe, McPherson, & Blake, 2007). These physiological and psychological aspects of 

CRPS may mediate the visual size effects. 

We believe that visual analgesia is not simply based on visual evidence of lack of 

damage, given that in a threshold experiment participants are aware that damage will never 
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occur. Additionally, we previously found visual analgesia with noxious stimuli that were 

clearly suprathreshold and entirely invisible (i.e., infrared laser stimuli, Longo et al., 2009). 

Finally, our findings cannot be explained by changes in skin temperature or scale-

dependence of the mirror box illusion that we used to alternate vision of hand or object at a 

single spatial location.  

In conclusion, we show for the first time that non-informative vision of one’s own 

body has an analgesic effect on pain perception. Not only does viewing the body reduce pain, 

but the specific features of the visual content affect pain processing. Specifically, the 

analgesic effect is directly proportional to the spatial scale at which the body is seen and felt, 

with visual enlargement increasing analgesia, and reduction decreasing it. Our results 

highlight a plastic and flexible link between representation of body size and nociceptive 

perception. This suggests new possibilities to modulate acute pain cross-modally by 

manipulating vision of the body. Cognitive therapies that aim to relieve physical pain are 

generally focused on the painful stimulus itself, e.g. modulating expectations and attention 

towards pain sources. Here we show that the multisensory context in which pain occurs, in 

this case the body and its appearance, is also important. Seeing the body enlarged attenuates 

pain.  Looking beyond the painful stimulus, to the body itself, may have novel therapeutic 

implications. 
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Figure captions 

Figure 1. Stimuli, apparatus and procedure. 

Figure 2. Mirrorbox illusion questionnaire. Item 1 was given in both the view hand 

and object conditions, items 2 and 3 only in the hand condition. For items 1 and 2, 

participants rated their agreement using a 7-point Likert scale, +3 indicating “strongly agree” 

and -3 “strongly disagree”. Item 3 required dichotomous responses, after which participants 

indicated the strength of the feeling that the hand was a right/left hand using a 0-100 scale. 

Right hand responses were coded positively, left hand responses negatively, yielding scores 

between -100 (strong left hand) to 100 (strong right hand). Error bars indicate +/- 1 SE. 

Figure 3. Mean changes in hand width estimates (post – pre visual exposure, cm) and 

heat-pain thresholds (°C), as a function of visual context (hand, object) and visual distortion 

of size (reduced, real size, enlarged). Error bars indicate +/- 1 SE. 
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